
CMSC 417 Computer Networks Spring 2016

Project 1: Pingmap-Traceroute

Assigned: February 8 Due: February 22, 4:59:59 PM.

1 Description

In this assignment, you will extend the pingmap tool from project 0 to add features from the
popular traceroute tool as well as providing a way to map out a simulated network. traceroute
is a popular tool used to determine the path between two hosts by using the time to live (TTL)
field in the IP header to force each hop along the path to generate an error message and send it
back thus providing a list of every hop along the path.

In this project, we will extend the base we have from project 0 to explore some of the concepts
around IP forwarding that we’ve discussed in class. In particular, your client will probe a simulated,
IP-like network by sending specially-crafted messages that will be forwarded inside the network and
eventually a reply will be returned to your client. In place of the pingmap-server we will provide
a pingmap-router that will only respond to messages that are directed to it and will forward
messages not destined to it according to the fields in the message. Each message should formatted
as follows and sent as a UDP segment.

bits 0 through 31
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 type version TTL hdr len flags
1 source destination message

... message (cont’d)

Where

• type should be set to 0x8

• version should be set to 0x1

• TTL will be decremented at each hop and upon hitting zero an echo will be sent back with
the TTL expired flag set.

• hdr len is the length of the message header in 16-bit increments. Thus, a typical message
header will have length three indicating it is 48 bits long.

• flags four bits to indicate special conditions with the message—reserved bits should be set
to zero
28 29 30 31

reserved reserved reserved TTL expired

• source should be the 1-byte ID of the node sending the message, e.g., your node’s ID for
messages you send and the server/router’s ID for replies.

• destination should be the 1-byte ID of the node the message is for, e.g., the server/router’s
ID for messages you send and your node’s ID for replies.

1



For this project, you will:

1. Extend your pingmap-client in C to send messages with the new message header and receive
their echo from the specified server.

2. Find the average round trip time (RTT) between your client and the specified server.

3. Handle lost / reordered messages and replies as in project 0.

4. Produce the list of pingmap-routers between your client and the specified server.

5. Provide the average latency to each pingmap-router along the path.

6. Provide a map of the simulated network listing all the links visible to you.

2 The Router

To facilitate testing your code, we will provide you with a pingmap-router that will forward
messages it receives that aren’t destined for it (assuming the message has a valid destination),
respond to messages that are destined for it, and reply with error messages when a message TTL
hits zero.

NOTE: you will not be required to implement any of the pingmap-router in this project—it
will all be provided for you.

Like the pingmap-server in project 0, the pingmap-router is configurable. Allowing it to
simulate a variety of different networks. Instead of providing parameters for loss and reordering,
you instead provide it with parameters for each of its simulated links and its simulated forwarding
table. This configuration will all be stored in a single file and the pingmap-router will take only
two parameters: the name of that file and its node ID so that it can discover what parts of the
configuration file pertain to it.

The configuration file will consist of lines of three kinds: ones specifying nodes, ones specifying
links, and ones specifying forwarding table entries.

The node lines will look like:

node <nodeID> <port|client>

Where each line specifies a node and the UDP port on which that node will be listening. One node
will instead be labeled as the client and will listen on a dynamic port.

The link lines will look like:

link <nodeID> <nodeID> <latency-in-ms> <loss-rate>

Where each line specifies a symmetric link between two nodes with a specified latency in milliseconds
and loss rate specified as a floating point number between 0 and 1. A loss rate of 0 will result in
all packets being delivered and a loss rate of 1 will result in all packets being lost.

The forwarding table entry lines will look like:

forward <nodeID-curr> <nodeID-dest> <nodeID-next>

Where each line says that when the node with ID nodeID-curr receives a message destined for the
node with ID nodeID-dest it will forward it to the node with ID nodeID-next assuming that the
TTL field is still positive and that there is a link between nodeID-curr and nodeID-next.

2



client
node 1

router
node 2

port 12345

router
node 3

port 12346

10 ms
0% loss

100 ms
0% loss

Figure 1: A sample simulated network.

As an example, the configuration file for a 3-node simulated network shown in Figure 1, where
the pingmap-router nodes have IDs 2 and 3 and where the pingmap-client has node ID 1 could
be written as follows:

node 1 client

node 2 12345

node 3 12346

link 1 2 10 0.0

link 2 3 100 0.0

forward 2 3 3

forward 2 1 1

forward 3 1 2

forward 3 2 2

To execute the router, run:

python bin/pingmap-router.py

Its command line arguments are:

• -f: the configuration filename, defaults to config

• -d: the node ID, defaults to 2

To be clear, each time you run the pingmap-server it will behave as though it is one node in
the simulated network. Thus, to simulate the network described in Figure 1, you would need to
run the pingmap-server twice: one for node 2 and one for node 3.

3 The Client

Your task is to extend the pingmap-client from project 0 to add traceroute-like features. Note
that we have explicitly designed this part so that it will require minimal modifications to the
solution to project 0. Upon entering your repository, we must be able to run make followed by
./bin/pingmap-client in order to execute your code. Your client should accept the following
command line arguments:

• -d: Destination Node ID your client should send messages to

• -l: Local Node ID your client should send messages from

• -i: Interval of time between subsequent messages (specified in milliseconds)

• -n: Number of messages to be sent to the router

3



• -p: Port number of the pingmap-router that will act as your gateway into the simulated
network.

• -t: Produce a list of hops in order of distance from your client

– you can ignore anything passed in via -i or -n when this option is enabled

– you will be passed at most one of -t or -m

• -m: Produce a map of the links in the simulated network that your client can see

– you can ignore anything passed in via -i, -n or -d when this option is enabled

– you will be passed at most one of -t or -m

For example, the command below specifies that the client should send 10 messages to the node
with ID 2, each separated by 100 milliseconds all using the node listening on port 12345 as the first
hop (or gateway):

bin/pingmap-client -p 12345 -n 10 -i 100 -d 2

Your client should be capable of processing the command line arguments in any order, just like a
typical Unix command is capable of processing command line arguments in any order. Also, like
typical Unix commands, your client should be capable of handling any subset of these arguments.
(Hint: There’s a useful function for doing this.)

As in project 0, if some of the arguments are not specified on the command line, you should
default to:

• destination node ID = 2

• local node ID = 1

• port number = 12345

• Number of messages = 1

• Interval of time between subsequent messages = 0

3.1 Messaging a Router

When neither -t or -m are specified, your client should behave exactly the same as the pingmap-client
from project 0 except that it should use the new message header so that it can send messages to the
simulated network where it might be forwarded by more than one router before getting a response.

Note that while in project 0 you were sending to a server identified by its port (specified by
with the -p option on the command line), in this project you will be sending to a router identified
by its node ID (specified with the -d option). In this project, the -p option specifies the port on
which you can find your gateway router to get access to the simulated network, not the server (or
router) you are sending to.

Your client’s task is to calculate each message’s RTT before exiting. If you do not receive
a response to your message within one second, mark the message as dropped. You may include
any information in the message’s payload that you’d like; it will be echoed back to you. The
mechanics of calculating RTT and message ordering are completely up to you. Upon completion,
pingmap-client’s output (to stdout) will be of the following form:

4



Message 0: 10ms

Message 1: 120ms

Message 2: Dropped

Message 3: 11ms

...

Message n: 9ms

The RTT of the messages must be output in the order they were sent, regardless of the order of
the responses that you received.

When you submit, ensure your code does not print any other text to stdout. Feel free to print
any debugging messages that you’d like to stderr.

3.2 Traceroute -t

When your client is passed the -t option, it should trace the route to the destination router figuring
out each hop along the route (via it’s node ID) and calculate the (round-trip) latency to each one.
Upon completion, pingmap-client’s output (to stdout) will be of the following form:

Hop 1: 12 10ms

Hop 2: 17 40ms

Hop 3: 3 53ms

...

Hop n: <destNodeID> 80ms

This list should always end with the destination and thus there will always be at least one hop.
You can assume you will get a reply from a node after a reasonable number, e.g., 5, of attempts.

Note that the latency should be the round trip time to get a reply back from that router and
so you should expect the latency reported for each hop to go up, e.g., the latency of hop 1 will be
less than that of hop 2 which will be less than that of hop 3 and so on.

3.3 Map -m

When your client is passed the -m option, it should produce a list of all the links the client can
observe in the simulated network and their latency. You can assume that there is at most one
link between any two simulated nodes, that each link has the same latency in each direction,
and that you will get replies after a reasonable number, e.g., 5, of attempts. Upon completion,
pingmap-client’s output (to stdout) will be of the following form:

Link 1 2 40ms

Link 2 7 32ms

Link 17 19 21ms

Link 4 7 19ms

...

Link <x> <y> 17ms

For each link, please print the smaller node ID first. As an example, Link 3 7 11ms would be
a valid line, but Link 7 3 11ms is not. You can print the links in any order you like—we will sort
the output before comparing it to the correct output.

5



Unlike in the the previous two instances, the latency should be the one-way latency of the link
rather than the the round-trip latency. That is, your goal is to recover the latency of the link as
specified in the config file within a reasonable amount of error.

Note that there is an upper bound on the number of links in the network given the above
assumptions, but we leave computing that and how to use that in your solution to you.

4 Getting Started, VMs, Vagrant, and submitting

This is all the same as project 0. For this project, download the starter code from: http://ter.

ps/417p1.

5 Grading

Our tests will allow you to receive partial credit for only fulfilling a subset of these requirements.

6

http://ter.ps/417p1
http://ter.ps/417p1

	Description
	The Router
	The Client
	Messaging a Router
	Traceroute -t
	Map -m

	Getting Started, VMs, Vagrant, and submitting
	Grading

